TA的每日心情 | 开心 2022-9-23 15:09 |
---|
签到天数: 2 天 [LV.1]初来乍到
超级版主
- 积分
- 10889
|
作者 | 姚旭 编辑 | 小智 本文将通过对比传统国内互联网公司和 Facebook 等硅谷互联网公司的团队构成和项目流程,结合其中对比的利弊,以及融合两种风格在小红书落地的实战经验, 总结一条,以数据驱动和 Ownership 为核心的高效团队组建和协作的方法论,作为增长型公司如何在“效率”上超越大公司的最核心的竞争力。本文整理自 QCon 2018 上海站上的演讲。 从硅谷到中关村到底有什么差别?以 Data Driven+Ownership 组建高效团队!8 w" b8 m- o; T! Q% @7 J- T
效率差距 在加入小红书之前,我曾先后在百度、知乎、Facebook、Airbnb 工作。今天就想分享我在这过去的十几年间看到过、经历过的不同公司在“效率”上不同做法,以及一些自己的总结。
0 C; ?# m/ l3 v6 q; L9 n“从硅谷到中关村到底有多远?”大家在十年前觉得硅谷是技术型公司的圣殿。但是,今时今日中美互联网公司,这些差别都变得非常小。
5 t' X: G% k- n( p& Q
" q7 U( L- e3 P) h, G1 ?2018 年初 Mary Meeker 的年度互联网报告里面,Top 20 市值 / 估值的互联网公司中国占了一半,但从实际角度,还是在一些领域内差距明显。以 Facebook 和阿里巴巴为例。他们两个的市值曾经非常接近。但平均每个员工创造的收入,Facebook 大概是阿里巴巴的 3 倍。这个数据代表了一个公司的效率。* k7 d4 r2 {/ m5 z/ \
7 S6 M' N7 _) G! w2 Y0 A站在今天,中美互联网企业最明显的差距就是团队效率。 n/ Q/ L4 S* c
9 g4 C; W4 _& x" Y3 }$ X接下来,我们将对比差别产生的原因,及能从硅谷能学到的东西,包括在小红书的一些实践当中看到的效果和遇到的问题。: n7 j' H: e& U( N# a+ y" C
互联网时代的软件工程 我们今天对于效率的讨论,都是在互联网时代这个大背景下如何能够最大化团队的效率,最大化团队的产出。但中文互联网元年大概是在 2000 年左右,我们现阶段的所有互联网企业都是脱胎于那个软件时代。
2 p2 n4 t9 z5 O$ p1 L, H, g
3 O( p0 c$ U$ ~2 o0 a' Z
软件时代和互联网时代有什么区别?软件时代 release 周期大概是半年到一年,背后的逻辑就八个字:质量第一,按期交付。
. ?! v+ y, V: p C, f) m
, ?& C+ n' S* k8 j9 q我们来讲讲其中的巨无霸:微软。
9 I& [0 _# x6 G( g; E+ ~0 a E
$ ~9 L' s/ Q% [) ?+ c, A+ l在中国互联网企业里,大家沿用了微软的开发流程。PM 中心制,以交付文档作为各个阶段的结果产出。这是一个对于整个软件开发而言好的流程。
% W3 Y7 }# j) q+ \2 v3 `/ G9 ], ]# t y' ^
但到了互联网时代,这样软件工程有什么问题?8 i2 a6 d. Y: E5 `3 j: J0 F) b
. B: x7 f6 `- T4 K3 c' ?5 ] w
- 第一点,所有原始设计的功能点的周期不再是月级别,是周级,甚至可能都是天级。3 M! u) j. s' r5 ?6 o
- 第二点,职能化区隔。基本上我们的团队构成都是以职能切分,PM、工程师、测试工程师等。7 |$ A+ X y; R; M; I$ N- R
在复杂的互联网场景中,我们就会出现 PM 的需求和排期,会分别细化到客户端团队,到服务器后端等。Team 越来越大,时间却越来越少。流程能带来安全和质量,但流程不能带来效率。! {) ?! L( `: p6 R) k! Y
我们再来看看互联网时代下带来的变化:3 n6 U- y. W7 ^( q1 T( t+ X0 X3 t: I
% c; h a b1 Z9 W/ O9 Q1 U# `- 第一点,迭代速度比不出问题重要。如果一个特别严重的 BUG 放到线上,1 分钟就能定位,5 分钟就能 Release 修复,可能只影响到了非常少的人,可以用迭代速度去弥补出现的问题。
; g% r8 V; p W% u4 n+ s6 `' \ - 第二点,一个基本功能的 MVP,也就是一个功能的最小化产品单元,比一个完备的产品设计要重要得多。
. a* ~, S" @( j! z. ] - 第三点,用户反馈就显得比按期交付更重要。应该用最小化的产品单元,用最快的迭代速度,将用户的反馈收集到,确定这个产品的功能要不要,做不做深耕。: ]/ H! |( x( g/ |0 I
; P; B' w/ H; z2 G7 O& @
在互联网时代下,对比传统软件时代,我们的最终生产效率能差多少?10 倍肯定是有的。效率就是第一竞争力。
# Q2 g Q8 w/ _4 a; e' y$ Q
" F* j+ j) [8 }. j+ k: [) b5 ]我们再举个互联网时代公司的例子:Facebook。
5 @$ a) e' h `( }% Y4 t) N' RFacebook 的一个最小 TEAM 单元叫做三人组,是设计师、产品经理和工程师,三个人完成基本功能。三个人之间不是流水线上各自独立的环节,而是相互讨论,相互交织。: v$ }8 g' s! ]$ @& J8 B
/ X2 Y2 l; g. j- L3 f产品经理,他不再只是 Product Manager,而是 Problem Manager,让大家能看到问题的全貌,一起来探索解决的方案。
8 w; T r* G7 ?. @" v% }$ }+ }' L& J' X; i- R3 A
三人组这样的团队,与那个按职能来划分的团队相比,有什么区别?; H( S- T6 u8 H; Q
第一点,对问题负责,所有人不再只负责流水线上的一环,而是负责最终结果。
$ r& F8 w8 I4 z- N第二点,因为存在大量的面对面交流,而不是文档交流,它的结果是对于主观能动性的激发是大的。6 n1 o( S- _6 w
这两点是为什么能激发 10 倍的效能的基础。对一件事情有 Ownership 可以激发个人巨大的效能。
# e5 a5 L) l& G以效率为中心,带来了哪些变化呢?2 y- E4 U3 u2 j
变化 1:团队
5 g8 @: S7 n7 G. v我们先来看看团队的变化。
1 H* |9 _" F2 D# x8 A
$ i- o! }6 Q: \4 D Q例如 Instagram 从创业团队做大,一定要有术业有专攻。对于 Instagram 而言,第一个切分出来的团队是基础架构,他们支撑一个底层业务。0 X& l5 I' q; d; j; ~6 d. z
第二个拆分出来的团队是 Growth。这个增长团队是闭环的,为了目标就是一个,如何协同一起把这件事情做成,把问题解决。) b8 O9 `% M/ g8 x- `+ ?
之后,还会切分出 Engagment 团队,以及 monetization 团队。
7 Q! R: n# O& F团队的切分方式都是以能让大家分享同样一个用户侧的目标,或者是公司级的目标。
' d; E# _, ^3 z( i5 {3 s在实际场景当中,大家最怕与跟自己职能不一样的人放在一起。但我认为,单一驱动在今时今日这个场景下面是不存在的。
a( n# ^$ x" u驱动大家的东西,是用户侧的反馈,或者叫数据。每个人都应该放下只有我说了算的 EGO,平等的对话,在各个地方收集问题,一起找到解决路径。
2 [% c7 V5 f1 F在这样的团队里面,带来了第二种变化,数据无比重要。职能不一样,团队的共同语言是什么?数据驱动决策的含义,就是团队里面每个人都需要去阅读数据,读懂数据。2 y$ Z, r8 Z- b' J- Q% V7 l
数据驱动分几级:; A- w2 w9 \( U( H# d
: E# h! \: w& c8 |7 K
- 第一个,公司级。出个 Dashboard,加个 BI 团队,负责给老板跑数。这是低 level。
/ g: g. f! U9 H1 b7 o0 x; T; m - 中等 level 是团队级,每个团队都有自己的可以量化的目标和结果。
7 q2 S$ c8 @' M6 A; v4 r - 高等 level,应该是团队当中的每一个人每天都在跟数据打交道,每个人都能用数据,每个人都会用数据。但这需要有配套的机制和工具做辅助。
* d& D/ g# Y7 n& K5 N2 I
& Z K1 E( q6 |5 }4 f- w3 _2 M在 Facebook 内部,五年前有三大工具:Scuba,Hive,Ods。ODS 传统 KV 储存,主要是一些计数器。HIVE 就是数据仓库,可以跑很大的数据量,缺点就是反应慢。SCUBA 在 Facebook 内部是人大家日常使用最多和最有帮助的工具,可以实时地做多维聚合。
4 m/ J0 z) v! O' l
( b# Q# F0 e+ B, h
R+ ]1 m1 Z2 k& \2 n7 C
实际应用工具当中的一个转变,对人的影响是非常大的,工程师关心的不单是 CPU、MEMORY,关心的是全链路业务上面的用户反馈,要有工具能看到结果长什么样子。产品经理也要有能力自己取数,要有 data sense。
0 f6 U: x; o( `6 E" P1 P1 F) U7 I( @7 ]( Y
这样,数据科学家和数据分析师不再是取数工具了,而是可以去做数据分析,找到驱动数据变化的深层原因。7 C ?2 ?) q! e+ W/ ^9 ?
最后数据应该是公开的,应该是能覆盖到尽量多的维度,数据的生产者和数据的消费者应该是一体的。我想知道,我做了这个功能有没有人用,有多少人用,用得好不好,这才是最大的驱动力。$ Q4 L0 _' d; u/ O4 W: Y! U
变化 3:职责 优秀的团队,需要对结果负责。对结果负责很重要的一点,或者说做出成功产品的团队核心是什么?叫做 DOGFOODING。! W2 Y! P$ s v" N% [
: Z. F1 D3 P8 c. NDOGFOODING 是什么意思呢?就是自己用自己的功能,自己吃自己的狗粮,或者狗屎。自己做出来的功能,首先自己要先用起来。
0 J8 A) ], y5 |! Z" F1 J% K4 g9 \1 S- @1 a9 O8 U
在 Facebook 有几种简单的工具去支持大家快速做用户侧尝试,哪怕是只给自己使用尝鲜:
+ w& U9 z6 E+ ^* D5 t- J
/ a6 D$ X8 i2 x- 一种是 gatekeeper。通过在 gatekeeper 上设置过滤条件,对一小批用户做测试。, |( Y6 w! {1 v! X
- 另外一种是 AB 测试,切 10% 的用户尝试新功能,另外 10% 的用户最对照。2 @, C; y* M8 V
那工具为什么可以让大家变成对结果负责呢?原因叫做赋能。因为有能力,所以有担当。
6 }- `, @) F( w+ g; c1 v
C+ I: ]. G1 w
除了靠各种 CI,Canary 工具以外, gatekeeper 和 AB testing 也可以让你小流量去实验,实验个 5000 用户,觉得没问题,再放大,用这样的工具去辅助这样的权力。, a% R/ X$ m% ^% c) i$ R: b/ x
7 [+ i9 A2 T" W( B) t7 A$ v' @; v& U总结来说,在互联网时代,为什么 Data driven 和 ownership 可以提供 10 倍的效能差别?因为在大目标对齐的情况下,各个小团队之间可以组成一个分布式的决策机制,大家可以跨职能的团队协作,去中心化进行决策,做到面对不确定性时的敏捷。
7 O7 M# ?7 o" ]) }1 l0 V9 V
. D. f j3 i# g- u
小红书的实践
1 {% A; r; R% N5 F最后我们来看一下过去这两年,对于效率,我和我的团队一起在小红书的一些真实的实践。
) {6 G+ H/ l4 |; e% C小红书是一个生活方式平台,里面涉及到衣食住行,吃喝玩乐,并且可以完成从发现到决策到记录的全链路流程。
2 k9 \ i( X }) C- ?7 k E
/ V. q# t) q; D; P4 f6 j我们是一个面向用户、有丰富数据的平台,这是我们产品上的天生优势。我们一天的用户阅读量有数十亿次,这种流量规模情况下,我们可以做非常多的 AB Testing,用 1% 的流量就可以做非常多的事情。. f, J- ]0 `2 y& v5 d* V# \& `
- z) m5 E: E; x7 K我们刚才讲的对于各种效率理念,在过去两年一步一步在小红书做落地实践。虽然有种种挑战,过去的两年里面我们还是摸索着落地了很多效率层面上的改进:
7 I; m4 s2 ?, K( D% s; R$ U+ `1 S首先第一点:数据赋能。每个人都会玩的数据平台。我们自己做了一个前端,后面主要是 Hive,Presto,Spark 等等这样的数据计算平台。在这里用户可以套用模板写 query。在小红书团队中最引以为傲的一点是,几乎每个人都会写。然后通过一些工具可以把这些数据变成一个图,或者是变成一个每天监控的 dashboard,还可以变成 high level 的报警。
/ ^# e# K9 L+ J4 @
( Y5 X b7 h% m- V
第二点,工程赋能。工程师有能力决定自己功能什么时候上,要什么时候上,或者要不要上。我们用了 Phabricator 做 Code Review,集成了后面 Jenkins 做 CI。所以工程师在这里边每天会看到说我现在有多少个 Diff 等着我去 Review,以及我的 diff 在被 review 的状态是什么样子。当有一个 reviewer 点击了 accept,就代表可以上线了,就触发了我们最终的 deploy 流程,就上到线上,这是对于工程权力的下放。) n) b& O2 n/ L: z& |5 q5 Y' Y
# g4 ]: v! Y/ I: b第三点,实验赋能。我们现在线上 AB testing 平台一天有 300+ 个实验,也就是说我们每天在尝试的新功能有 300 多个。AB testing 就是应该犯错的,AB testing 就应该是 10% 的成功率才对,或者更低,代表实验的效率更高和跑得更快。
) [( `5 u6 q2 k( @
' D* Y0 ^" V7 H0 N! @0 i
我们刚才讨论这些关于效率的话题,在小红书团队里面都有所实践并且一直在进步。我能看到工程师、产品经理、数据分析师在团队里面效能的变化,效率成倍的激变。
* C- k+ q* g* C( r* a5 H3 h! L
4 m V3 a) n. l( ]) X2 }1 M我们大概在今年年初的时候,我们整个的用户突破了 1 亿,现在已经超过 1.5 亿。小红书所有核心指标都是一年 4 倍到 5 倍地指数级增长。7 ?6 u0 ?' b& b/ D* Z& O' X
5 ~0 ~# @0 e& w7 k2 g7 R( c# F3 D我们就是一个从十来个人的团队到 100 多人的团队,QPS 从百到万到十万,去撑起了这么一个每年 5 倍左右的核心 metric 的变化。
( e+ H4 G: R) W4 w3 ^, O0 p
( Z7 C9 y& |3 G
那么从硅谷到中关村到底有多远呢?
& s# _7 m4 s6 i% \9 `+ o( `; \! a3 L& i. q7 ]
在小红书,我们其实就是 为一线团队做两件事情,一个叫做放权,一个叫做赋能。6 e$ t# ~8 n! g* p, c- i1 L* u; k# ^0 H
放权的意思是通过 Data Driven 的方式给予决策权的分布式下放;赋能的意思是通过工具,无论是测试工具也好,CI 也好,实验平台也好等等这样的工具能让团队每个人有 ownership。最后,欢迎大家加入小红书团队,来一家高增长的公司高效率地做事情。
0 B: H, B0 i0 G8 O7 I* O本文彩蛋 硅谷一直以其“不断创新、鼓励冒险、包容失败、崇尚竞争、平等开放”的文化闻名于世。许多公司从一个灵感迸发的火苗,在这里长成参天大树。究竟硅谷公司里有哪些令人着迷的工程师文化,可以让人管中窥豹略见一斑呢?请在 InfoQ 后台回复关键词:硅谷,获取一篇以 Facebook 为例的项目开发流程和工程师的绩效管理机制文章。
1 r% d& m/ j8 U: @2 g作者介绍
- i) A, f0 s+ a( ?6 a" s+ q6 D' v' c
姚旭,小红书社区技术负责人,端到端地负责小红书的社区功能,包括大前端,搜索、推荐、基础架构和相关的机器学习系统。 加入小红书前,曾在 Airbnb、Facebook、知乎和百度等公司担任首席架构师和主任工程师职位。$ o/ a% O7 Y6 m+ h% ~' P
可能是讲分布式系统最到位的一篇文章5 D3 \& K6 ? Z/ d7 g. d/ k
3 T) k& k, G2 v% j9 b. P% b
高效的技术团队需要技术管理两手抓,你找到正确的上升途径了?关注新一届的 QCon 大会,100+ 技术大咖给你解答启发。" c* ?- z/ ]; v9 E
QCon 北京 2019 现已全新起航,除了一些常规的专题设置外,新增了用户增长、智慧零售等当下热点话题,在技术深度和广度上不断延展。目前大会 7 折报名中,立减 2640 元。识别二维码了解 QCon 十周年的精心策划。
[9 Z* r1 A0 @ F0 ?4 D
& A8 _/ _2 J: e \# y6 d* ]2 E% @议题讲师持续邀约中,如果你有好的话题并乐于与他人分享,欢迎点击「 阅读原文 」提交议题。* M% B/ }! g+ N+ E" ]/ f
3 @% c6 M4 ]& o
/ @* x+ r! O( A8 m4 d! e
- l2 J' H) H8 ?* r3 a来源网址:http://www.yidianzixun.com/home?page=article&id=0KdET5Wf |
|